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Abstract. The Learning Autonomous Service Robots (LASR) team is
an emerging team, which participated in RoboCup@Home 2022 for the
first time. The team is part of a larger research group whose focus is on
using machine learning to improve the ability of robots to integrate with
the dynamic everyday environment, and the people that inhabit it. We
describe our research results and the capabilities of the robotic platform
for participation in RoboCup@Home.

1 Introduction

The LASR team was founded in 2019 as the Leeds (now Learning) Autonomous
Service Robot team, and has since participated in three competitions of the
European Robotics League (ERL), namely, two Sciroc Challenges1 (2019 and
hybrid 2021), and the Smart Cities Challenge2 (2023); a virtual RoboCup@Home
(2021) and RoboCup@Home 2022 in Thailand. We achieved first place in the
Coffee Shop episode in 2019. During the pandemic, we ranked 5th out of 10 in the
virtual RoboCup@Home, and achieved third place in the remote (stremed from
our lab) pick-and-place manipulation Sciroc Challenge. After the pandemic, like
most teams, we had to reboot. We took part in RoboCup@Home 2022, our first
in-person RoboCup, and restored a fully working team for the ERL Smart Cities
2023, where we achieved first place in both the Coffee Shop and the Elevator
tasks, in addition to the joint award (with B-it-bot) for best team overall.

The team also runs a robot club at King’s College London, where any stu-
dents interested in robotics can come, learn, and participate. We use our current
research goals and competitions to provide direction and output-focused projects
to help drive engagement and relevance. The team is therefore both an education
and research platform, which several of the previous members have described as
the highlight of their university experience. We have members at all levels: un-
dergraduate, master’s, and PhD students.

2 Research

The group’s research is centred on adaptation for decision-making in autonomous
agents, with robots as one of the natural applications. Some of the research lines
1 https://sciroc.org/challenge-description-2019/
2 https://eu-robotics.net/erl-smart-city-competition-in-2023/
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have an immediate use in RoboCup, while others are more oriented towards the
future of service robots. This is particularly the case for online learning, which
has not been part of the competition yet, but we consider central to the field.

In this section, we will first briefly describe the research on planning and
learning that we believe will have a future role in autonomous robots. Then, we
will present our research on robot manipulation and human-robot interaction,
which tackles more directly some of the challenges of the last RoboCup@Home.
Lastly, we will present same recent results in social navigation.

2.1 Adaptation in Planning

We combine planning and Reinforcement Learning (RL) with the goal of making
online learning practical for real robots. Reasoning over models allows the agent
to strongly limit the exploration to actions that lead towards the goal. Since “all
models are wrong, but some are useful”, the interaction of planning and learning
can meaningfully drive exploration greatly reducing the sample complexity of
RL agents, while the adaptation provided by model-free RL allows to overcome
the inevitable inaccuracies of the models. We developed methods to make use
of action languages while learning action costs from the real world [18], or that
integrate with Answer Set Programming [20] to constrain the exploration to
safe and explainable behaviours, while adapting to the unmodeled aspects of the
environments.

Planning is a notoriously computationally hard problem in general, but effec-
tive heuristics can make planning feasible in a number of scenarios of practical
interest. We developed learned heuristics from meta-reinforcement learning, so
that previously solved tasks can inform the search on new related tasks [15,16].
We also developed a method to reduce, over time, the planning horizon, so that
the agent behaviour gradually transitions from model-based to model-free [11].
Beyond being hard to compute, executing plans is also a difficult task due to the
high uncertainty that robotics domains present. We studied monitoring users
to preventively replan when errors may occur [17] and also considered how to
model planning problems better to prevent artificial dead-ends [4].

At King’s College London, there is a long tradition on task planning applied
to robotics, with contributions such as the ROSPlan framework [9]. ROSPlan has
been actively in development since then, with upgrades that greatly simplify the
use of different planners as well as their integration with robot sensors [7], and
providing tools to implement low-level action execution with intermediate state
machines [3]. We integrated high-level planning into our manipulation pipeline
through ROS Plan.

2.2 Adaptation in Human-Robot Interaction

We recently started a new research line in adaptation to users with different
abilities. We consider fully collaborative tasks, in which a robot and a person
share a common goal. In defining robot actions, the designer further defines
whether the action depends on human capabilities. For instance, a robot may
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be able to move at different speeds, with the action move_fast depending on
the human collaborator to be able to walk_fast. For any new collaborator, the
robot cannot know, beforehand, what capabilities they have. However, it starts
from a prior, and through reinforcement learning and interaction, it estimates
the capability level of the collaborator. If the robot collects sufficient evidence
that the person does not have an ability necessary for a given action, the robot
adapts by disabling the corresponding action and finding a new way to carry
out the task. The robot can, therefore, tailor its level of support from minimal,
for fully-abled people, to carrying out most of the task when assisting a disabled
person. We demonstrate the adaptation on several tasks, including a real-world
experiment using our TIAGo robot [26].

We also carry out research in assistive robotics and robot adaptation to
preferences [8,6], as well as efforts towards explainability of the robot’s motions
and behaviour [5,28].

2.3 Learning for Manipulation

We tackled two manipulation problems for which efficient planners are not
available: manipulation in clutter, and with deformable objects. Most consol-
idated manipulation strategies for rigid objects compute collision-free trajecto-
ries, which cannot be used in clutter. Positioning and retrieving objects from
shelves are examples of manipulation often involving clutter, also recognized at
RoboCup@Home. Considering the interaction with other objects makes the tra-
jectory planning problem significantly more complex, especially if, in addition to
grasping, other physics-based actions (such as pushing and sliding) are taken into
account, whose effects are difficult or expensive to predict accurately. We devel-
oped a learning-based Receding Horizon Planner, which tackles two challenges:
the computational complexity of the problem when considering interactions be-
tween all objects, and the inaccuracy of models, whose predictions accumulate
errors and become invalid after a small number of actions. We used a learned
value function in simulation as a heuristic for planning, both influencing action
probabilities during rollouts and providing a cost-to-go estimate for states at the
end of the short-horizon plan. The short horizon enables quick reaction times.
Rather than planning for each problem as if that was the first one ever encoun-
tered, experience is accumulated in the value function so that previously solved
problems provide a heuristic for the new ones. The system has been extended
[1] to retrieve objects in the more realistic scenario of partial observability, with
the robot looking at the shelf from the side, and also demonstrated on a real
robot [2].

Recently, we developed a planning algorithm to simplify the actions when
planning for deformable objects, such as for cloth folding [29]. We expect de-
formable object manipulation to play an increasing role in RoboCup@Home,
given the natural application in the home setting.
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2.4 Curriculum Learning

Knowledge transfer between related tasks is another approach to agent versatil-
ity, increasing the range of capabilities of the autonomous system, while learning
new tasks increasingly faster. Curriculum learning consists in learning through
tasks of growing complexity, towards one or more final tasks, so that learning
is either faster, or results in a better learned behaviour than from scratch. The
automatic generation of curricula involves a number of interesting challenges: in
the definition of tasks at the appropriate level of difficulty for the agent, in the
knowledge transfer methods that allow the agent to take advantage of previous
tasks, and in the sequencing of tasks once they have been generated. Nonethe-
less, curriculum learning is widespread in any level of human learning, from
motor control to higher education, and there is no doubt that the order in which
we learn matters. Our team, with collaborators, contributed to the problem of
optimal curriculum generation: a set of strategies to create intermediate tasks
for artificial agents [21], a method to estimate the transfer potential between
tasks [25], the first algorithm to generate curricula that require no learning in the
process [27], a formalization of the problem in the framework of combinatorial
optimization [14], and an algorithm for task sequencing in critical, real-world
problems [13]. The field has grown significantly under the pressure that deep
learning has put on sample complexity, to the point that most deep learning
applications employ some form of curriculum, often implicitly defined by hand.

2.5 Social Navigation

Most of the work in social and human-aware navigation is concerned with per-
son direction and velocity, in order to act “naturally” and respect personal space
around moving people. We focused on human activities in which people may
be moving very little or not at all, for instance taking a lift, or queuing, but
in which we expect the robot to act differently from default geometric naviga-
tion. We presented initial results on learning heuristics for such social navigation
scenarios [12], enabling a classic A* planner to produce socially acceptable tra-
jectories. We recently continued this line of work by also learning a generative
network to define a cost function, which added to the local map fully enables
social navigation in a number of situations. For instance, the robot does not plan
through pairs or groups of talking people, or it joins the people in a queue if it
recognizes that they are lined up with its same goal. These late breaking results
have not been published yet, but are demonstrated in the submission video.

3 System Architecture and Capabilities

The research group owns a TIAGo Steel robot from PAL Robotics3, as seen in
the addendum. The robot has a mobile base with a differential drive mechanism,
battery pack, laser range finder, rear sonar sensors and an onboard computer.
The torso has a lifting mechanism, houses the onboard microphone array and
3 http://pal-robotics.com/

http://pal-robotics.com/
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supports a 7 degree of freedom (DOF) arm with gripper and a 2 DOF head. The
head houses an RGB camera and depth sensor setup.

The TIAGo robot comes with the ROS middleware on top of which PAL has
developed their own proprietary middleware. We have then integrated our own
software either directly through ROS, or through PAL’s middleware layer.

3.1 Current Capabilities

Some of the currently implemented capabilities are described below, and in most
cases can be found within our GitHub Organisation4, available to the public and
in particular to the RoboCup@Home community.

Task Architectures Many of the below capabilities are implemented as stan-
dalone ROS packages, which are intended to be robot-agnostic. Cohesive uses
of these capabilities are implemented through robot skills, which are individual
States or small Finite State Machines (FSMs), which can be easily dropped into
larger Hierarchical Finite State Machines (HFSMs), due to their well-defined
interfaces. In the future, we plan to enable the robot to perform its own rea-
soning about how best to solve the task at hand by utilising its aforementioned
robot skills. Towards this, we have began utilising ROSPlan [9] for the General
Purpose Service Robot (GPSR) task.

Social Navigation It is often the case that robots navigating in the wild look
unnatural or break social conventions, especially in situations where crowded
spaces are involved, such as riding an elevator, navigating through crowds and
queuing to reach a goal. To contribute to decision-making about acceptable
waiting positions outside of elevators, we constructed a dataset of laser readings
represented as 2D images collected whilst the robot was waiting for the elevator,
and finetuned a Keypoint RCNN model5. The navigation planner was used to
filter out positions that couldn’t be reached. For positioning the robot whilst
riding the elevator, we use heightmaps - an approach borrowed from terrain rep-
resentations. We use laser readings to construct a heightmap and select the least
busy position, again using the navigation planner to filter infeasible positions.
To navigate through crowded areas and conform to queues, we learn a social cost
function which when combined with the path planners traditional cost function,
results in human and socially-aware navigation [12].

Object Detection and Recognition Object detection has been a hot topic
in computer vision for many years, with many competing solutions vying for
the top spot. After testing a number of implementations we have settled on
the popular YOLO framework [24] for object detection. YOLOv8 performs both
object detection and 2D segmentation - which through further computation on
4 https://github.com/LASR-at-Home/
5 https://pytorch.org/vision/main/models/keypoint_rcnn.html

https://github.com/LASR-at-Home/
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the PointCloud, we scale to 3D. Whilst pretrained weights for YOLO exist that
are trained on large datasets, encompassing many classes, such as COCO6, often
there is a need to detect specific object classes that are less general. Thus, we
developed our own training pipeline7. We begin by collecting 2D images from
the robot’s camera of target objects at varying (but not exhaustive) rotations
about each axis, through the use of a turntable with a uniform background.
We segment the objects using SegmentAnything [19] to generate masks and
generate a synthetic dataset by superimposing these masks onto random and
realistic backgrounds. Our pipeline only takes as input the 2D images, generates
the synthetic dataset, and trains a model using it (bootstrapping from pretrained
weights), without the need for manual intervention. However, we found it quite
useful to supplement our synthetic dataset with manually labelled, in-context
images of the objects, again collected through the robot’s camera. For semantic
reasoning, we utilise OpenAI’s CLIP model [22] in a visual question answering
(VQA) context. This, for example, allows us to detect whether a person in an
image is wearing glasses or not.

Person Detection and Recognition The pretrained weights available to
YOLO incorporate both objects and people. We have taken a slightly different
approach where we train separate networks for objects and for people, and then
contextually select which model to apply at runtime. However, more recently
we implemented a ROS wrapper for BodyPix 2.0, which is specifically aimed at
person detection, segmentation and joint-pose estimation. We apply the same
method as we do to objects to produce 3D detections. For re-identifying peo-
ple, we maintain a database of images for each individual, and given a target
image (cropped to only contain a single person) we perform a simple lookup
in our database, using DeepFace for comparison. DeepFace verifies a match by
evaluating a distance metric in facial-embedding space.

Person Pose Estimation Person pose estimation is a general problem in com-
puter vision to deduce a person’s behaviour from the position and orientation
of their body. We utilise BodyPix 2.0 to estimate people’s poses. This includes
recognising gestures, such as waving, alongside determining whether peole are
standing or sitting, and inferring what someone is pointing at.

Object Manipulation We use the MoveIt! motion planning framework for ob-
ject manipulation. It integrates 3D sensors with the Octomap, which implements
3D occupancy grid mapping to model arbitrary environments. This allows our
robot to execute planning motions free of collisions to grasp the target object. In
Robocup 2021, we used Grasp Pose Detection (GPD) to generate 6-DoF grasps
that were executed by MoveIt. GPD generalizes well to unknown models because
it takes in a pointcloud of an object and produces viable grasps. In SciRoc 2021,

6 https://cocodataset.org/
7 https://github.com/insertish/yolov8-auto-trainer
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we used MoveIt to execute geometrically inferred grasps. More recently, we used
Contact Graspnet, which specialises in grasp pose generation in cluttered scenes.

Social Interaction Dialogue is a natural medium for humans to interface with
robots. We utilise Whisper [23] for transcribing audio into text and then various
context-dependent natural language understanding (NLU) models trained with
Rasa for intent recognition and entity extraction. Our speech processing pipeline
thus performs end-to-end audio to intent recognition and entity extraction. We
also implement mapping of natural language instructions to a large database
of known commands, which is especially useful for GSPR style HRI tasks. This
is done by computing an embedding of the natural language command using
the Sentence-Transformers8 library, and querying this against a large database
of known commands using the open-source FAISS library [10], returning the
most similar commands in the database. Communication through dialogue is
not always possible, particularly when the human cannot speak. Thus, we have
also implemented methods of communicating with our robot through various
interfaces implemented on the tablet which is mounted on our robot’s head.

4 Conclusion

We introduced the research and current capability of the LASR team. We believe
that our research in adaptive decision making and reinforcement learning in the
real world will bring a new perspective to the competition, strongly contributing
to the development of service robotics for the home.
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PAL Robotics TIAGo Steel Hardware Description [OPL]

Fig. 1. PAL Robotics
TIAGo Steel robot

PAL Robotics TIAGo is a customisable robot used com-
mercially and for research. We have the Steel version of
the robot with an additional Windows tablet. The spec-
ifications are as follows:

– Base: differential drive base, 1m/s max speed.

– Torso: lifting, stroke 35cm.

– Arm: 7 DOF with gripper.

– Head: 2 DOF with sensors.

– Dimensions: height: 110 - 145cm, base footprint:
54cm diameter

– Weight: 72kg.

Our robot incorporates the following devices:

– External laptop with graphics card

– Touch screen Windows tablet (head mounted)

– External microphone array (potential)

– Nvidia Jetson TX2 (potential)

– Raspberry Pi 5 (potential)

Robot software and hardware specification sheet



M. Leonetti et al. | LASR 2024

Robot’s Software Description

OS: Ubuntu 20.04
http://releases.ubuntu.com/20.04/

Middleware: ROS Noetic + PAL
http://wiki.ros.org/noetic

Simulation: Gazebo
http://gazebosim.org/

Visualisation: RViz
http://wiki.ros.org/rviz

Navigation: move_base & pal_planner
http://wiki.ros.org/move_base

Manipulation:

MoveIt!
https://moveit.ros.org/
GPD
https://github.com/atenpas/gpd
Contact Graspnet
https://github.com/NVlabs/contact_graspnet

Depth Analysis: PCL
http://pointclouds.org/

Speech Analysis:

Dialogflow
https://dialogflow.com/
Whisper
https://github.com/openai/whisper
Rasa
https://rasa.com/

Natural Language Processing:
Sentence Transformers
https://github.com/UKPLab/sentence-transformers
FAISS
https://github.com/facebookresearch/faiss

Object & Person Recognition:

YOLO
https://pjreddie.com/darknet/yolo/
YOLOv8
https://github.com/ultralytics/ultralytics
SegmentAnything
https://github.com/facebookresearch/segment-anything
BodyPix 2.0
https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation
https://github.com/de-code/python-tf-bodypix
CLIP
https://github.com/openai/CLIP

Facial Recognition: DeepFace
https://github.com/serengil/deepface

Complex Robot Planning:

SMACH
http://wiki.ros.org/smach
actionlib
http://wiki.ros.org/actionlib
ROSPlan
https://kcl-planning.github.io/ROSPlan/

Pose Estimation BodyPix 2.0
https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation
https://github.com/de-code/python-tf-bodypix

Robot software and hardware specification sheet
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